Application of AI in Risk management – Second Bi Term Homework 4 Attached Files: ·  Week4 – K-Means-Cluster-Analysis using Excel.xlsx Â

Application of AI in Risk management – Second Bi Term



Homework 4

Attached Files:

·


 Week4 – K-Means-Cluster-Analysis using Excel.xlsx
 (32.86 KB)

·


 Week4 – K-means Cluster Analysis Steps using Excel.docx
 
Week4 – K-means Cluster Analysis Steps using Excel.docx – Alternative Formats (116.65 KB)

·


 Week4 – Correlation Examples.xlsx
 (22.298 KB)

·


 Wee4 – Calculation for VaR.xlsx
 (41.41 KB)

·


 Homework4.doc
 
Homework4.doc – Alternative Formats (46.5 KB)

·


 Week4 – BARC_StockandMarket_Risk_Returns_Sample.xlsx
 (51.434 KB)

·


 Week4- HSBC_Expected_Returns_Risk_Analysis.xlsx
 (15.885 KB)

Please read all the lecture slides, view videos, and review resources presented under Week 4 Learning Materials. 

Download the attached Homework 4 document and complete the questions. This assignment will require you to use Microsoft Excel. Excel files are attached to help you with the homework.

image1.

Midterm Exam Instructions


Description: Applying the CRoss Industry Standard Process for Data Mining (CRISP-DM) framework

Review the following case studies found here:


https://www.knowledgehut.com/blog/data-science/top-data-science-case-studies

Choose one of the industries and create an APA formatted white paper by following these steps:

Step 1. [
BUSINESS UNDERSTANDING] Provide additional research and thoroughly outline the problem faced by the industry chosen. (
1-page minimum)

Step 2. [
DATA DISCOVERY/UNDERSTANDING] Locate data (e.g., Kaggle.com or similar) relevant to your chosen industry and produce a model (Use one of the tools RStudio, Python, Jupyter, RapidMiner, or Tableau) that you propose will help resolve the issues you discovered in your research and readings. (
Minimum 1 graphic that adequately depicts your model)

Step 3. [
POSTURING STATEMENT] Articulate what your proposed model is postured to accomplish. (
1-page minimum)

image1.png

Midterm Exam Instructions


Description: Applying the CRoss Industry Standard Process for Data Mining (CRISP-DM) framework

Review the following case studies found here:


https://www.knowledgehut.com/blog/data-science/top-data-science-case-studies

Choose one of the industries and create an APA formatted white paper by following these steps:

Step 1. [
BUSINESS UNDERSTANDING] Provide additional research and thoroughly outline the problem faced by the industry chosen. (
1-page minimum)

Step 2. [
DATA DISCOVERY/UNDERSTANDING] Locate data (e.g., Kaggle.com or similar) relevant to your chosen industry and produce a model (Use one of the tools RStudio, Python, Jupyter, RapidMiner, or Tableau) that you propose will help resolve the issues you discovered in your research and readings. (
Minimum 1 graphic that adequately depicts your model)

Step 3. [
POSTURING STATEMENT] Articulate what your proposed model is postured to accomplish. (
1-page minimum)

image1.png

Sheet1

Var A Var B
Student GPA Motovation Correl = 0.641486711 0.641486711
Joe 2 50
Lisa 2 48
Mary 2 100
Sam 2 12 Height
CM
Weight
Kg
Deana 2.3 34 110 44
Sarah 2.6 30 116 31
Jennifer 2.6 78 124 43
Gregory 3 87 129 45
Thomas 3.1 84 131 56
Cindy 3.2 75 138 79
Martha 3.6 83

Calculation for VaR

<

BADM 566 Application of AI in Risk Management

Homework 4 Due:

Name: ________________________ Score: _________________

Question 1.

Describe clustering, classifications and associations. Explain how clustering is different from classifications.

Question 2.

a. Describe various risk measurement approaches.

b. Describe VaR approaches used to estimate the value at risk.

Question 3.

Calculate
Expected Return in the attached Excel sheet “Week4- HSBC_Expected_Returns_Risk_Analysis”. Please use ExpectedReturn.HSBC, and ExpectedReturn.MK columns. Please see completed example the Excel example attached “Week4 – BARC_StockandMarket_Risk_Returns_Sample”.

Question 4.

Calculate
Standard deviation,
Market Beta, and
Historical VaR in the attached Excel sheet “Week4- HSBC_Expected_Returns_Risk_Analysis”. Please use ExpectedReturn.HSBC, and ExpectedReturn.MK columns. Please see completed example the Excel example attached “Week4 – BARC_StockandMarket_Risk_Returns_Sample”.

Question 5.

Calculate the Pearson Coefficient of Correlation between sales and Payroll cost using MS Excel function “CORREL”. Please see the example in attached Excel “Week4 – Correlation Examples”.

Date Close Sorted Expected returns Mean 0.000363891 VaR(90) -0.031376644
1/2/20 94.900497
1/3/20 93.748497 -0.01213903 Standard deviation 0.024767271 VaR(95) -0.040374645
1/6/20 95.143997 0.014885572
1/7/20 95.343002 0.002091619 VaR(99) -0.057253397
1/8/20 94.598503 -0.007808638
1/9/20 95.052498 0.004799177
1/10/20 94.157997 -0.0094106
1/13/20 94.565002 0.004322575
1/14/20 93.472 -0.011558208
1/15/20 93.100998 -0.003969124
1/16/20 93.897003 0.008549908 nth Percentile Value = μ + z*σ
1/17/20 93.236 -0.00703966
1/21/20 94.599998 0.014629521 μ: Population Mean
1/22/20 94.373001 -0.002399546 z: z-score from z table that corresponds to percentile value Use Excel Command: NORMINV(1-(percentile/100),0,1)
1/23/20 94.228996 -0.001525913 σ: Standard deviation
1/24/20 93.082001 -0.012172421
1/27/20 91.417 -0.017887465 VaR(90)
1/28/20 92.662498 0.013624359
1/29/20 92.900002 0.002563108 Mean (μ) = 0.000363891
1/30/20 93.533997 0.006824489 Standard deviation = 0.024767271 Z Value VaR(90)
1/31/20 100.435997 0.073791351 Z-value at 90% = 1- 0.90 = 0.1 -1.2816 -0.0313778435
2/3/20 100.209999 -0.002250169
2/4/20 102.483498 0.022687347 VaR(95) Z Value VaR(95)
2/5/20 101.9935 -0.004781238 Z-value at 95% 1- 0.95 = 0.05 -1.6449 -0.0403757931

Sales

Payroll cost

6

4

8

4

9

6

5

4

4.5

3

9.5

6

Title

Real Statistics Using Excel
K-Means Cluster Analysis

Kmeans

K-means Algorithm
X Y Cluster Centroid 1 2 Dist-sq 1 2 Cluster
5 0 1 X 2.6 3.2 7.72 7.72 12.24 1
5 2 2 Y 1.4 3 4.24 6.12 4.24 2
3 1 1 0.32 0.32 4.04 1
0 4 2 SSE 36.92 11.24 13.52 11.24 2
2 1 1 0.52 0.52 5.44 1
4 2 2 Converge FALSE 1.64 2.32 1.64 2
2 2 1 0.72 0.72 2.44 1
2 3 2 1.44 2.92 1.44 2
1 3 1 4.84 5.12 4.84 2
5 4 2 4.24 12.52 4.24 2
X Y Cluster Centroid 1 2 Dist-sq 1 2 Cluster
5 0 1 X 3 2.8333333333 5 5 13.6944444444 1
5 2 2 Y 1 3 5 5 5.6944444444 1
3 1 1 0 0 4.0

HSBC_StockandMarket_Risk_Return

BARC_StockandMarket_Risk_Return

date close.HSBC close.MK ExpectedReturn.HSBC ExpectedReturn.MK
3/4/14 631.700012 6823.799805
3/5/14 622.599976 6775.399902
3/6/14 625.700012 6788.5
3/7/14 619.599976 6712.700195
3/10/14 615.700012 6689.5
3/11/14 616.599976 6685.5
3/12/14 599.200012 6620.899902
3/13/14 597.200012 6553.799805
3/14/14 598.099976 6527.899902
3/17/14 597 6568.399902
3/18/14 597.900024 6605.299805
3/19/14 591.799988 6573.100098
3/20/14 594.200012 6542.399902
3/21/14 605.700012 6557.200195
3/24/14 606.200012 6520.399902
3/25/14 611.700012 6604.899902
3/26/14 611.200012 6605.299805
3/27/14 608.299988 6588.299805
3/28/14 611 6615.600098
3/31/14 607.5 6598.399902
4/1/14 613 6652.600098
4/2/14 611.200012 6659
4/3/14 610.5 6649.100098
4/4/14 612.5 6695.600098
4/7/14 606.200012 6622.799805
4/8/14 605 6590.700195
4/9/14 612.700012 6635.600098
4/10/14 618.700012 6642
4/11/14 617.599976 6561.700195
4/14/14 621.400024 6583.799805
4/15/14 617.900024 6541.600098
4/16/14 616.299988 6584.200195
4/17/14 617.400024 6625.299805
4/22/14 614.900024 6681.799805
4/23/14 612.200012 6674.700195
4/24/14 613 6703
4/25/14 602.5 6685.700195
4/28/14 600.900024 6700.200195
4/29/14 611.099976 6769.899902
4/30/14 604.099976 6780
5/1/14 607.400024 6808.899902
5/2/14 605.700012 6822.399902
date close.jpmc close.MK expectedReturn.jpm expectedReturn.mk
7/14/11 208.628006 5847
7/15/11 206.272003 5843.700195 -1.129284148 -0.0564358645
7/18/11 191.815994 5752.799805 -7.0082264145 -1.5555279526
7/19/11 195.464005 5790 1.9018283741 0.646645047
7/20/11 205.626007 5853.799805 5.1989121987 1.1018964594
7/21/11 221.559998 5899.899902 7.7490154249 0.7875243181
7/22/11 221.328995 5935 -0.1042620519 0.5949270086
7/25/11 211.490997 5925.299805 -4.4449657398 -0.1634405223
7/26/11 211.307007 5929.700195 -0.086996611 0.0742644279
7/27/11 204.147995 5856.600098 -3.3879671581 -1.2327789702
7/28/11 210.520996 5873.200195 3.1217553716 0.2834425558
7/29/11 205.994995 5815.200195 -2.1499048009 -0.9875365742
8/1/11 200.453003 5774.399902 -2.6903527438 -0.7016145899
8/2/11 200.222 5718.399902 -0.1152404786 -0.9697977444
8/3/11 196.296005 5584.5 -1.9608209887 -2.3415624002
8/4/11 181.054001 5393.100098 -7.7648060132 -3.4273417853
8/5/11 171.817001 5247 -5.1017928071 -2.7090188453
8/8/11 162.024994 5069 -5.69909086 -3.3924147132
8/9/11 165.626999 5164.899902 2.2231168853 1.8918899586
8/10/11 151.216995 5007.200195 -8.7002747662 -3.0532964819
8/11/11 164.287994 5162.799805 8.6438690307 3.107517254
8/12/11 172.925003 5320 5.2572368739 3.0448632707
8/15/11 169.369003 5350.600098 -2.0563827892 0.575189812
8/16/11 167.751999 5357.600098 -0.954722512 0.130826447
8/17/11 160.684998 5331.600098 -4.212767086 -0.4852919129
8/18/11 142.257004 509

K-means Cluster Analysis

The objective of this algorithm is to partition a data set
 S consisting of n-tuples of real numbers into 
k 
clusters 
C1, …, 
Ck in an efficient way. For each cluster 
Cj, one element 
cj is chosen from that cluster called a 
centroid.

Definition 1: The basic 
k-means clustering algorithm is defined as follows:

· Step 1: Choose the number of clusters 
k

· Step 2: Make an initial selection of 
k centroids

· Step 3: Assign each data element to its nearest centroid (in this way 
k clusters are formed one for each centroid, where each cluster consists of all the data elements assigned to that centroid)

· Step 4: For each cluster make a new selection of its centroid

· Step 5: Go back to step 3, repeating the process until the centroids don’t change (or some other convergence criterion is met)

There are various choices available for each step in the process.

An alternative version of the algorithm is as follows:

· Step 1: Choose the number of clusters 
k

· Step 2: Make an initial assignment of the data elements to the 
k clusters

· Step 3: For each cluster select its centroid

· Step 4: Based on centroids make a new assignment of data elements to the 
k clusters

· Step 5: Go back to step 3, repeating the process until the centroids don’t change (or some other convergence criterion is met)

Distance

There are a number of ways to define the distance between two n-tuples in the data set 
S, but we will focus on the Euclidean measure, namely, if 
x = (
x1, …, 
xn) and y = (y1, …, y
n) then the 
distance between 
x and y is defined by

Since minimizing the distance is equivalent to minimizing the square of the distance, we will instead look at 
dist2(
x, y) = (
dist(
x, y))2. If there are 
k clusters 
C1, …, 
Ck with corresponding centroids 
c1, …, 
ck, then for each data element 
x in 
S, step 3 of the k-means algorithm consists of finding the value 
j which minimizes 
dist2(
x, cj); i.e.

If we don’t require that the centroids belong to







Application of AI in Risk management –  Second Bi Term



Homework 4



Attached Files:
·
            

 Week4 – K-Means-Cluster-Analysis using Excel.xlsx
 (32.86 KB)
        
·
            

 Week4 – K-means Cluster Analysis Steps using Excel.docx
 
            Week4 – K-means Cluster Analysis Steps using Excel.docx – Alternative Formats (116.65 KB)
        
·
            

 Week4 – Correlation Examples.xlsx
 (22.298 KB)
        
·
            

 Wee4 – Calculation for VaR.xlsx
 (41.41 KB)
        
·
            

 Homework4.doc
 
            Homework4.doc – Alternative Formats (46.5 KB)
        
·
            

 Week4 – BARC_StockandMarket_Risk_Returns_Sample.xlsx
 (51.434 KB)
        
·
            

 Week4- HSBC_Expected_Returns_Risk_Analysis.xlsx
 (15.885 KB)
        
Please read all the lecture slides, view videos, and review resources presented under Week 4 Learning Materials. 
Download the attached Homework 4 document and complete the questions. This assignment will require you to use Microsoft Excel. Excel files are attached to help you with the homework.


image1.

Midterm Exam Instructions




Description: Applying the CRoss Industry Standard Process for Data Mining (CRISP-DM) framework



Review the following case studies found here:


https://www.knowledgehut.com/blog/data-science/top-data-science-case-studies

Choose one of the industries and create an APA formatted white paper by following these steps:
Step 1. [
            BUSINESS UNDERSTANDING] Provide additional research and thoroughly outline the problem faced by the industry chosen. (
            1-page minimum)
        
Step 2. [
            DATA DISCOVERY/UNDERSTANDING] Locate data (e.g., Kaggle.com or similar) relevant to your chosen industry and produce a model (Use one of the tools RStudio, Python, Jupyter, RapidMiner, or Tableau) that you propose will help resolve the issues you discovered in your research and readings. (
            Minimum 1 graphic that adequately depicts your model)
        
Step 3. [
            POSTURING STATEMENT] Articulate what your proposed model is postured to accomplish. (
            1-page minimum)
        

image1.png



Midterm Exam Instructions




Description: Applying the CRoss Industry Standard Process for Data Mining (CRISP-DM) framework



Review the following case studies found here:


https://www.knowledgehut.com/blog/data-science/top-data-science-case-studies

Choose one of the industries and create an APA formatted white paper by following these steps:
Step 1. [
            BUSINESS UNDERSTANDING] Provide additional research and thoroughly outline the problem faced by the industry chosen. (
            1-page minimum)
        
Step 2. [
            DATA DISCOVERY/UNDERSTANDING] Locate data (e.g., Kaggle.com or similar) relevant to your chosen industry and produce a model (Use one of the tools RStudio, Python, Jupyter, RapidMiner, or Tableau) that you propose will help resolve the issues you discovered in your research and readings. (
            Minimum 1 graphic that adequately depicts your model)
        
Step 3. [
            POSTURING STATEMENT] Articulate what your proposed model is postured to accomplish. (
            1-page minimum)
        

image1.png




Sheet1







Var A
Var B




Student
GPA
Motovation


Correl =
0.641486711


0.641486711




Joe
2
50




Lisa
2
48




Mary
2
100




Sam
2
12
















































Height
CM
Weight
Kg




Deana
2.3
34
















































110
44




Sarah
2.6
30
















































116
31




Jennifer
2.6
78
















































124
43




Gregory
3
87
















































129
45




Thomas
3.1
84
















































131
56




Cindy
3.2
75
















































138
79




Martha
3.6
83








































Calculation for VaR



Date
Close
Sorted Expected returns


Mean
0.000363891


VaR(90)
-0.031376644


1/2/20
94.900497


1/3/20
93.748497
-0.01213903


Standard deviation
0.024767271


VaR(95)
-0.040374645


1/6/20
95.143997
0.014885572


1/7/20
95.343002
0.002091619








VaR(99)
-0.057253397


1/8/20
94.598503
-0.007808638


1/9/20
95.052498
0.004799177


1/10/20
94.157997
-0.0094106


1/13/20
94.565002
0.004322575


1/14/20
93.472
-0.011558208


1/15/20
93.100998
-0.003969124


1/16/20
93.897003
0.008549908






nth Percentile Value = μ + z*σ


1/17/20
93.236
-0.00703966


1/21/20
94.599998
0.014629521






μ: Population Mean


1/22/20
94.373001
-0.002399546






z: z-score from z table that corresponds to percentile value


Use Excel Command: NORMINV(1-(percentile/100),0,1)


1/23/20
94.228996
-0.001525913






σ: Standard deviation


1/24/20
93.082001
-0.012172421


1/27/20
91.417
-0.017887465






VaR(90)


1/28/20
92.662498
0.013624359


1/29/20
92.900002
0.002563108






Mean (μ) =
0.000363891


1/30/20
93.533997
0.006824489






Standard deviation =
0.024767271


Z Value
VaR(90)


1/31/20
100.435997
0.073791351






Z-value at 90% =
 1- 0.90 =
0.1
-1.2816
-0.0313778435


2/3/20
100.209999
-0.002250169


2/4/20
102.483498
0.022687347






VaR(95)




Z Value
VaR(95)


2/5/20
101.9935
-0.004781238






Z-value at 95%
 1- 0.95 =
0.05
-1.6449
-0.0403757931


<


BADM 566 Application of AI in Risk Management

                                                       Homework 4                        Due:  
Name: ________________________                                    Score: _________________


Question 1.

Describe clustering, classifications and associations. Explain how clustering is different from classifications. 

Question 2.

a. Describe various risk measurement approaches. 
b. Describe VaR approaches used to estimate the value at risk. 

Question 3.

Calculate
            Expected Return in the attached Excel sheet “Week4- HSBC_Expected_Returns_Risk_Analysis”.  Please use ExpectedReturn.HSBC, and ExpectedReturn.MK columns.  Please see completed example the Excel example attached “Week4 – BARC_StockandMarket_Risk_Returns_Sample”.
        

Question 4.

Calculate
            Standard deviation,
            Market Beta, and
            Historical VaR in the attached Excel sheet “Week4- HSBC_Expected_Returns_Risk_Analysis”.  Please use ExpectedReturn.HSBC, and ExpectedReturn.MK columns.  Please see completed example the Excel example attached “Week4 – BARC_StockandMarket_Risk_Returns_Sample”.

Question 5.

Calculate the Pearson Coefficient of Correlation between sales and Payroll cost using MS Excel function “CORREL”. Please see the example in attached Excel “Week4 – Correlation Examples”.




Sales 


Payroll cost  




6


4




8


4




9


6




5


4




4.5


3




9.5


6







Title



Real Statistics Using Excel


K-Means Cluster Analysis









Kmeans





K-means Algorithm




X
Y


Cluster


Centroid
1
2


Dist-sq
1
2


Cluster




5
0


1


X
2.6
3.2


7.72
7.72
12.24


1




5
2


2


Y
1.4
3


4.24
6.12
4.24


2




3
1


1










0.32
0.32
4.04


1




0
4


2


SSE
36.92




11.24
13.52
11.24


2




2
1


1










0.52
0.52
5.44


1




4
2


2


Converge
FALSE




1.64
2.32
1.64


2




2
2


1










0.72
0.72
2.44


1




2
3


2










1.44
2.92
1.44


2




1
3


1










4.84
5.12
4.84


2




5
4


2










4.24
12.52
4.24


2




X
Y


Cluster


Centroid
1
2


Dist-sq
1
2


Cluster




5
0


1


X
3
2.8333333333


5
5
13.6944444444


1




5
2


2


Y
1
3


5
5
5.6944444444


1




3
1


1










0
0
4.0


HSBC_StockandMarket_Risk_Return



date
close.HSBC
close.MK
ExpectedReturn.HSBC
ExpectedReturn.MK


3/4/14
631.700012
6823.799805


3/5/14
622.599976
6775.399902


3/6/14
625.700012
6788.5


3/7/14
619.599976
6712.700195


3/10/14
615.700012
6689.5


3/11/14
616.599976
6685.5


3/12/14
599.200012
6620.899902


3/13/14
597.200012
6553.799805


3/14/14
598.099976
6527.899902


3/17/14
597
6568.399902


3/18/14
597.900024
6605.299805


3/19/14
591.799988
6573.100098


3/20/14
594.200012
6542.399902


3/21/14
605.700012
6557.200195


3/24/14
606.200012
6520.399902


3/25/14
611.700012
6604.899902


3/26/14
611.200012
6605.299805


3/27/14
608.299988
6588.299805


3/28/14
611
6615.600098


3/31/14
607.5
6598.399902


4/1/14
613
6652.600098


4/2/14
611.200012
6659


4/3/14
610.5
6649.100098


4/4/14
612.5
6695.600098


4/7/14
606.200012
6622.799805


4/8/14
605
6590.700195


4/9/14
612.700012
6635.600098


4/10/14
618.700012
6642


4/11/14
617.599976
6561.700195


4/14/14
621.400024
6583.799805


4/15/14
617.900024
6541.600098


4/16/14
616.299988
6584.200195


4/17/14
617.400024
6625.299805


4/22/14
614.900024
6681.799805


4/23/14
612.200012
6674.700195


4/24/14
613
6703


4/25/14
602.5
6685.700195


4/28/14
600.900024
6700.200195


4/29/14
611.099976
6769.899902


4/30/14
604.099976
6780


5/1/14
607.400024
6808.899902


5/2/14
605.700012
6822.399902




BARC_StockandMarket_Risk_Return



date
close.jpmc
close.MK
expectedReturn.jpm
expectedReturn.mk


7/14/11
208.628006
5847


7/15/11
206.272003
5843.700195
-1.129284148
-0.0564358645


7/18/11
191.815994
5752.799805
-7.0082264145
-1.5555279526


7/19/11
195.464005
5790
1.9018283741
0.646645047


7/20/11
205.626007
5853.799805
5.1989121987
1.1018964594


7/21/11
221.559998
5899.899902
7.7490154249
0.7875243181


7/22/11
221.328995
5935
-0.1042620519
0.5949270086


7/25/11
211.490997
5925.299805
-4.4449657398
-0.1634405223


7/26/11
211.307007
5929.700195
-0.086996611
0.0742644279


7/27/11
204.147995
5856.600098
-3.3879671581
-1.2327789702


7/28/11
210.520996
5873.200195
3.1217553716
0.2834425558


7/29/11
205.994995
5815.200195
-2.1499048009
-0.9875365742


8/1/11
200.453003
5774.399902
-2.6903527438
-0.7016145899


8/2/11
200.222
5718.399902
-0.1152404786
-0.9697977444


8/3/11
196.296005
5584.5
-1.9608209887
-2.3415624002


8/4/11
181.054001
5393.100098
-7.7648060132
-3.4273417853


8/5/11
171.817001
5247
-5.1017928071
-2.7090188453


8/8/11
162.024994
5069
-5.69909086
-3.3924147132


8/9/11
165.626999
5164.899902
2.2231168853
1.8918899586


8/10/11
151.216995
5007.200195
-8.7002747662
-3.0532964819


8/11/11
164.287994
5162.799805
8.6438690307
3.107517254


8/12/11
172.925003
5320
5.2572368739
3.0448632707


8/15/11
169.369003
5350.600098
-2.0563827892
0.575189812


8/16/11
167.751999
5357.600098
-0.954722512
0.130826447


8/17/11
160.684998
5331.600098
-4.212767086
-0.4852919129


8/18/11
142.257004
509

K-means Cluster Analysis

The objective of this algorithm is to partition a data set
             S consisting of n-tuples of real numbers into 
            k 
            clusters 
            C1, …, 
            Ck in an efficient way. For each cluster 
            Cj, one element 
            cj is chosen from that cluster called a 
            centroid.
        

Definition 1: The basic 
            k-means clustering algorithm is defined as follows:
        
· Step 1: Choose the number of clusters 
            k

· Step 2: Make an initial selection of 
            k centroids
        
· Step 3: Assign each data element to its nearest centroid (in this way 
            k clusters are formed one for each centroid, where each cluster consists of all the data elements assigned to that centroid)
        
· Step 4: For each cluster make a new selection of its centroid
· Step 5: Go back to step 3, repeating the process until the centroids don’t change (or some other convergence criterion is met)
There are various choices available for each step in the process.
An alternative version of the algorithm is as follows:
· Step 1: Choose the number of clusters 
            k

· Step 2: Make an initial assignment of the data elements to the 
            k clusters
        
· Step 3: For each cluster select its centroid
· Step 4: Based on centroids make a new assignment of data elements to the 
            k clusters
        
· Step 5: Go back to step 3, repeating the process until the centroids don’t change (or some other convergence criterion is met)

Distance

There are a number of ways to define the distance between two n-tuples in the data set 
            S, but we will focus on the Euclidean measure, namely, if 
            x = (
            x1, …, 
            xn) and y = (y1, …, y
            n) then the 
            distance between 
            x and y is defined by
        



Since minimizing the distance is equivalent to minimizing the square of the distance, we will instead look at 
            dist2(
            x, y) = (
            dist(
            x, y))2. If there are 
            k clusters 
            C1, …, 
            Ck with corresponding centroids 
            c1, …, 
            ck, then for each data element 
            x in 
            S, step 3 of the k-means algorithm consists of finding the value 
            j which minimizes 
            dist2(
            x, cj); i.e.
        



If we don’t require that the centroids belong to

Why Choose Us

  • 100% non-plagiarized Papers
  • 24/7 /365 Service Available
  • Affordable Prices
  • Any Paper, Urgency, and Subject
  • Will complete your papers in 6 hours
  • On-time Delivery
  • Money-back and Privacy guarantees
  • Unlimited Amendments upon request
  • Satisfaction guarantee

How it Works

  • Click on the “Place Your Order” tab at the top menu or “Order Now” icon at the bottom and a new page will appear with an order form to be filled.
  • Fill in your paper’s requirements in the "PAPER DETAILS" section.
  • Fill in your paper’s academic level, deadline, and the required number of pages from the drop-down menus.
  • Click “CREATE ACCOUNT & SIGN IN” to enter your registration details and get an account with us for record-keeping and then, click on “PROCEED TO CHECKOUT” at the bottom of the page.
  • From there, the payment sections will show, follow the guided payment process and your order will be available for our writing team to work on it.